Kronecker product approximation preconditioners for convection-diffusion model problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kronecker product approximation preconditioners for convection-diffusion model problems

We consider the iterative solution of linear systems arising from four convection–diffusion model problems: scalar convection–diffusion problem, Stokes problem, Oseen problem and Navier–Stokes problem. We design preconditioners for these model problems that are based on Kronecker product approximations (KPAs). For this we first identify explicit Kronecker product structure of the coefficient ma...

متن کامل

Symmetric Positive Definite Based Preconditioners For Discrete Convection-diffusion Problems

We experimentally examine the performance of preconditioners based on entries of the symmetric positive definite part and small subspace solvers for linear system of equations obtained from the high-order compact discretization of convection-diffusion equations. Numerical results are described to illustrate that the preconditioned GMRES algorithm converges in a reasonable number of iterations.

متن کامل

Equidistribution grids for two-parameter convection–diffusion boundary-value problems

In this article, we propose an adaptive grid based on mesh equidistribution principle for two-parameter convection-diffusion boundary value problems with continuous and discontinuous data. A numerical algorithm based on an upwind finite difference operator and an appropriate adaptive grid is constructed. Truncation errors are derived for both continuous and discontinuous problems. Parameter uni...

متن کامل

H-matrix Preconditioners in Convection-Dominated Problems

Hierarchical matrices provide a data-sparse way to approximate fully populated matrices. In this paper we exploit H-matrix techniques to approximate the LU -decompositions of stiffness matrices as they appear in (finite element or finite difference) discretizations of convectiondominated elliptic partial differential equations. These sparse H-matrix approximations may then be used as preconditi...

متن کامل

Finite element approximation of convection diffusion problems using graded meshes

We consider the numerical approximation of a model convection–diffusion equation by standard bilinear finite elements. Using appropriately graded meshes we prove optimal order error estimates in the ε-weighted H 1-norm valid uniformly, up to a logarithmic factor, in the singular perturbation parameter. Finally, we present some numerical examples showing the good behavior of our method. © 2006 I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerical Linear Algebra with Applications

سال: 2009

ISSN: 1070-5325

DOI: 10.1002/nla.666